International Journal of Health & Allied Sciences

ORIGINAL ARTICLE
Year
: 2015  |  Volume : 4  |  Issue : 2  |  Page : 83--88

A study on room design and radiation safety around room for Co-60 after loading HDR brachytherapy unit converted from room for Ir-192 after loading HDR brachytherapy unit


Om Prakash Gurjar1, Sandeep Kaushik2, Surendra Prasad Mishra3, Rajesh Punia1 
1 Department of Physics, Mewar University, Chittorgarh, Rajasthan, Roentgen SAIMS Radiation Oncology Centre, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
2 Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar, Haryana; Department of Radiation Oncology, BLK Super Speciality Hospital, New Delhi, India
3 Department of Radiotherapy, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Om Prakash Gurjar
Roentgen- SAIMS Radiation Oncology Centre, Sri Aurobindo Institute of Medical Sciences, Indore - 453 111, Madhya Pradesh
India

Context: Use of Co-60 source in place of Ir-192 in high dose rate brachytherapy unit (HDR unit) has come for discussion in recent publications. Co-60 based system has been advocated for centers which have fewer brachytherapy procedures as it has comparative economically and administrative advantage. This study has direct practical application for such institutions, which are at the cusp of moving from Ir-192 to Co-60 based brachytherapy. Aims: Conversion of Ir-192 HDR room to Co-60 HDR room and to analyze radiation safety around the room. Materials and Methods: Uniform thickness of 15 cm concrete was added to all walls (except one wall adjoining to linear accelerator bunker) to convert existing room forIr-192 HDR unit to suitable room for Co-60 HDR unit. Radiation survey around room was done. Actual and calculated wall thicknesses were compared. Results: Radiation survey data indicates that modified room is suitable for Co-60 HDR unit and all values are in full conformity to annual dose limits mentioned in Safety Code for Radiation Therapy Sources (SCRTS), Atomic Energy Regulatory Body (AERB; the regulatory body in India). Also, modified wall thicknesses are appropriate for annual design dose limits mentioned in Safety Report Series No. 47 of International Atomic Energy Agency (IAEA). However, console wall thickness (0.45 m) is less than the calculated thickness (0.53 m) for instantaneous dose rate (IDR) design dose limit (7.5 ΅Sv/h) as perabove safety report of IAEA. Conclusions: The modified wall thicknesses are appropriate for annual design dose limits. However, console wall thickness is less than the required thickness for IDR design dose limit. It has been suggested to add 2.64 cm steel on console wall. It has been found that design dose limits should be considered while making room layout plan and regulatory body should add these constraints inSCRTS.


How to cite this article:
Gurjar OP, Kaushik S, Mishra SP, Punia R. A study on room design and radiation safety around room for Co-60 after loading HDR brachytherapy unit converted from room for Ir-192 after loading HDR brachytherapy unit.Int J Health Allied Sci 2015;4:83-88


How to cite this URL:
Gurjar OP, Kaushik S, Mishra SP, Punia R. A study on room design and radiation safety around room for Co-60 after loading HDR brachytherapy unit converted from room for Ir-192 after loading HDR brachytherapy unit. Int J Health Allied Sci [serial online] 2015 [cited 2024 Mar 29 ];4:83-88
Available from: https://www.ijhas.in/article.asp?issn=2278-344X;year=2015;volume=4;issue=2;spage=83;epage=88;aulast=Gurjar;type=0